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Crossover behavior of a one-dimensional random energy model
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In this paper we formulate a finite-dimensional generalization of the random energy model~REM! where we
introduce a geometry and spatial correlations between energies. We study the model in dimension one by
transfer matrix techniques and we look at the crossover from one-dimensional to mean-field behavior. In a first
version of the model the mean field limit reproduces the behavior of the original REM, while a second version
of the model exhibits a first-order phase transition with a finite latent heat.@S1063-651X~98!00211-6#

PACS number~s!: 64.60.Cn
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The random energy model~REM! @1,2# is a very simple
mean field spin glass model that can be exactly solved.
model, in spite of its extreme simplicity, captures many fe
tures of other, more complicated, spin glass models.
REM belongs to the class of spin glasses that present a p
transition basically due to an entropy collapse phenomen
In other words, at low enough temperature, the system fi
no states with energies below a given value and rem
stuck in the lowest state. Below a critical value of the te
perature the model therefore freezes in a state of mini
energy and zero entropy. This transition is rather pecul
Even though it involves no latent heat, it does not show a
precursor effect~no divergent susceptibility!, sharing there-
fore some features typical of first-order transitions and oth
typical of second-order ones. This behavior is qualitativ
common to a whole class of mean field models of s
glasses~e.g., thep.2 spin model@3,4# and the Potts model!
@5,6# that show a discontinuous one-step replica symme
breaking~1RSB! transition@7#. An interesting observation is
that models of this class seem to be a good paradigm
describe structural glasses where no disorder is explic
present in the Hamiltonian but there is an effective, se
induced, randomness@8–10#. The aim of this work is to pro-
vide some insight into what happens to these models w
considered in finite dimension. Some work on this line
research has been contemporarily done on a short rangp
spin glass model above the lower critical dimension@11–13#.
In this paper we shall introduce a finite-dimensional gen
alization of the REM that includes a spatial dependence
the variables. We will study in detail the properties of t
model in one dimension where no phase transition occ
Nevertheless, the model is defined in such a way that, in
limit of a parameterM to infinity, the mean field solution is
recovered. So we will observe the crossover towards m
field behavior asM is increased.

The model will be formulated in two versions, which ha
interestingly different behavior. In the standard REM o
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considers a system of 2N levels with energies that are ran
dom independent variables extracted from a Gaussian di
bution

P~E!;exp~2E2/NJ2!. ~1!

From now on we shall setJ51. The energy levels of the
system can be thought as corresponding to the configurat
of N Ising spins.

Note that we have not specified any microscopic varia
for this model. This is the natural consequence of the hypo
esis that in this model the energies are totally uncorrela
from the microscopical configurations, which are now on
labels of the energy level and are here indicated by
index i .

Usually the limit N→` is considered, where the syste
freezes into a state of zero entropy. This is easily seen by
following argument. The average number of configuratio
with total energy betweenE andE1dE is

n~E!52Ne2E2/N, ~2!

where the overbar indicates the average overP(E). In the
large-N limit, for uEu.E05NAln 2, the entropy of the sys
tem is

ln@n~E!#.

For energies such thatuEu.E0 the exponent becomes neg
tive and for largeN there are no energy levels. In this ca
the system is frozen into its ground state with zero entro
Introducing the temperature by

T[S ]S~E!

]E D 21

and inverting this relation one obtains the free energy
5455 © 1998 The American Physical Society
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F5H 2NS T ln 21
1

4TD for T.Tc5
1

2Aln 2

2NAln 2 for T,Tc .

~3!

At the critical temperature the saddle point solution chan
discontinuously and one would say that the transition is fi
order. Furthermore, there are no physical quantities that
verge atTc . Nevertheless, the free energy is differentiable
the critical temperature and no latent heat is involved in
transition.

In the following we shall try to learn if the features of th
peculiar transition are a property of the adimensional c
and how this transition appears when the model is gene
ized to finite dimension. The REM can be generalized
introducing a geometry and a spatial correlation between
energy levels. The dimensional random energy mo
~DREM! can be formulated in general dimension and
mean field solution can be found using analytical argume
For finiteM we analyze the model ind51 by transfer matrix
techniques and study the crossover from one dimension
mean field behavior.

The DREM will be formulated in two versions, whic
have quite different mean field limits. An interesting que
tion is whether or not a growing correlation length develo
for increasingM .

The first version of the model shows, in the large-M limit,
a transition with no latent heat similar to the case of
REM. The second version of the model exhibits a first-or
phase transition into a crystalline state with a discontinuity
the specific heat.

The model is defined in the following way: We conside
d-dimensional square lattice of sideL with M spins on each
site, in the limit ofL→`. So V5Ld is the number of sites
andMV is the total number of spins of the model.

Let us consider the linki→ i 1m̂ between sitei and a
nearest-neighbor sitei 1m̂, wherem̂ is a positive unit lattice
vector. With each of the 22M possible configurations of th
spins at the edges of the linki→ i 1m̂ we associate a random
energy extracted from the probability distribution

P„E~s,t!…5
1

AMp
expF2E2~s,t!

M G . ~4!

The possible energy levels of a link are therefore 22M

independent numbers extracted from a Gaussian distribu
The partition function of the model is

Z5(
$s%

expS 2b(
i

V

(
m̂

Ei ,i 1m̂~si ,si 1m̂!D , ~5!

Ei ,i 1m̂(si ,si 1m̂) being the energy of linki→ i 1m̂. Note that,
to avoid double counting, for each sitei we consider only the
d nearest neighbors taken along the positive direction. A p
sible version of the model consists in taking the energies
different links as independent variables, in which case
have a nontranslationally invariant~NTI! spin glass. This is
s
t
i-
t
e

e
l-

y
e

el
e
s.

to

-
s

e
r

n

n.

s-
f

e

very similar to the short-rangep spin model introduced in
@11–13# in the large-p limit, where the energies are uncorre
lated. The only difference, which should not be very impo
tant, is that this model does not account for the interacti
between spins that are on the same site. A second pos
version is a translationally invariant~TI! model, in which the
correspondence between the spin configurations and the
sible energy levels is space independent. Ifd.1 the model
would have to be also rotationally invariant for our followin
consideration to be true. By TI we will therefore mean al
rotational invariant ifd.1. This means that for each samp
one assigns a law (s,t)→E(s,t) extracting the values o
the energy from Eq.~4!.

Both versions of the model can be formulated in a sy
metric and nonsymmetric way, i.e., one can impose or
impose the following symmetry condition, which reduces
half the number of independent energy levels:

Ei ,i 1m̂~s,t!5Ei ,i 1m̂~t,s!. ~6!

In the following we will study in detail the NTI model and
the symmetric translationally invariant~STI! model. While
the first model is rather natural in a spin glass context,
second is more attractive in connection to the modeling
structural glasses. In the latter model, in fact, if the lattice
chessboard decomposable, the system has a crysta
ground state. Nevertheless, frustration due to the presenc
the disorder makes the minimization of the~free! energy a
hard task and the system may eventually fall into a gla
state.

Both versions of the model can be easily solved in
large-M limit. This is quite trivial in the case of the NT
DREM since one basically recovers the REM. This is cle
because for largeM one can consider the energies of t
links essentially as uncorrelated so the average numbe
configurations with total energy betweenE andE1dE is

n~E!52MVe2E2/MV. ~7!

Applying Derrida’s standard microcanonical argument
the total energy of the system, one obtains a critical temp
ture of Tc51/(2Aln 2) and a ground state total energyE0

52MVAln 2. This is evidently the mean field solution o
the model since, for largeM , each spin interacts with a larg
number of nearest neighbors. The high-temperature f
energy density of the model is therefore the same as tha
the REM and atTc the model freezes in its ground state. T
translational invariant model behaves quite differently ev
at the mean field level if formulated with the further cond
tion of symmetry~6!.

The STI DREM has in fact a state of lower energy tha
2MLAln 2. This can be understood by considering the p
sible energy levels of one single link. The set of energies
each single link is a REM with 22M energy levels and there
fore has a ground state energyEi ,i 1m̂(s i

0 ,t i 1m̂
0 )

52MA2 ln 2. This is true also for the NTI model or for th
TI model without the symmetry condition, but the choice
the configurationt i 1m̂

0 on site i 1m̂ to minimize Ei ,i 1m̂ , in
general, does not allowEi 1m̂,i 1m̂1 n̂ to be minimized. Here
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FIG. 1. Free energy, in units of J, of the T
d51 REM vs temperature forM54,5,6,7. The
horizontal lines are the ground state energies.
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i 1m̂1 n̂ is a general nearest neighbor site ofi 1m̂. The rea-
son for this is that the disorder is different from link to lin
and there is no condition ensuring that the ground state
Ei 1m̂,i 1 n̂ will correspond to the configurationt i 1m̂

0 on site

i 1m̂. In fact, the TI model without the symmetry conditio
can crystallize on a periodic state only in those samples h
ing Ẽ05E(s i

0 ,s i 1m̂
0 ) so the energy of each link may aga

be in the ground state. For the STI DREM the picture is qu
different: If the lattice is chessboard decomposable, the s
can always arrange themselves in a structure that altern
in space the minimizing configurationss i

0 ,t i 1m̂
0 . In this

way, contrarily to the NTI model, every link is in its tru
ground state. This yields a total energyẼ052MVA2 ln 2
that is lower thanE0 . The freezing in this true ground sta
will happen at a temperatureT̃c at which the high-
temperature free energy reaches the valueẼ0 . One has

T̃c5
11A2

2Aln 2
. ~8!

This transition is first order and the latent heat is

Clat5Aln 2. ~9!

Below the lower critical dimension the phase transition d
appears whenM is finite. We do not know at present wha
the critical dimension is, but we know that it has to be larg
than one. However, even in dimension one, it is interestin
study the crossover from smooth to sharp behavior wheM
is increased.

For finite values ofM we analyzed the model in one d
mension by the transfer matrix method. For each linki of the

model we have a 2M32M transfer matrixT̂i . For the trans-
lationally invariant model one has

T̂i[T̂
of

v-

e
ns
tes

-

r
to

and it is easy to show, by standard transfer matrix argume
that, in the limit of an infinite chain (L→`), one can calcu-
late the free-energy density and the correlation length by
identities

2bF5 lim
L→`

1

L
ln~ t1![l1 ,

j5S lnUt1

t2
U D ~21!

, ~10!

wheret1 andt2 are, respectively, the first and second larg
~in modulus! eigenvalues ofT̂ andl1 is called themaximum
Lyapunov exponent.

In the case of the NTI model one has to consider

product of the sequence ofL transfer matricesPL5) i 51
L T̂i

and define the corresponding hermitian matrix

VL8@PL
1PL#.

For L→` the free-energy density of the model can be c
culated by making use of some central limit theorems
products of random matrices. More precisely, one can
~Fustemberg theorem! that the limit

2bF5l̃15 lim
L→`

1

L
lnuuPLuu ~11!

exists with probability one.
l̃1 is called themaximum Lyapunov characteristic exp

nent and is a positive nonrandom quantity@14#. One can
define a whole set of characteristic Lyapunov exponents

l̃ i[ lim
L→`

1

2L
ln~ t̃ i !, ~12!
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FIG. 2. Free energy, in units of J, of the NT
d51 REM vs temperature forM54,5,6,7. The
horizontal lines are the ground state energies.
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where thet̃ i are the eigenvalues ofVL . Similarly to the TI
case, a correlation length can then be defined

j5~ l̃12l̃2!~21!. ~13!

We computed the first and second Lyapunov character
exponents by means of the method developed by Ben
et al. @14#.

The results obtained by the transfer matrix method
finite M are summarized in Figs. 1–5. The values of the f
energy per linkF(T) are slightly different from theM→
infinity values above, but one can verify that they are c
sistent with them. For finiteM a given sample of the T
model is more likely to freeze at higher temperature than
mean field value and the free energy is always well above
mean field curve.

In Figs. 1 and 2 we plot the free-energy density per link
the STI DREM and the NTI DREM as a function of th
temperatures and for different values ofM . In Fig. 1 we plot
the sample-averaged free energy, while Fig. 2 needs no
ic
tin

r
e

-

e
e

f

v-

erage in virtue of the Fustemberg theorem. In Fig. 1
errors are of the same order of magnitude as the point siz
Fig. 2 there is a small numerical imprecision that we reck
is responsible for the slight wiggling of all the curves for th
NTI case.

We note that the nontranslationally invariant models
well as the nonsymmetric translationally invariant mod
follow quite well the mean field theoretical prediction a
ready for quite smallM . In Figs. 1 and 2 we also plotted th
lowest-energy state for different values ofM . The TI model
succeeds in freezing right in the lowest-energy by arrang
itself on the configuration of period 2. The NTI model do
not reach its lowest energy state and freezes only at lo
temperatures with a higher value of the energy.

In Figs. 3 and 5 we plot the correlation lengths of t
models. For the TI model we averaged the logarithm of
correlation length for different samples. One notices tha
T̃c the curves for various values ofM separate consistentl
and are steeper and steeper the largerM is. Here one sees th
effect of the crossover with the mean field limit since o
-
FIG. 3. Correlation length, in units of the lat
tice spacing, of the TId51 REM vs temperature
for M54,5,6,7.
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FIG. 4. Ferromagnetic correlation length, i
units of the lattice spacing, of the TId51 REM
vs temperature forM54,5,6,7.
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could imagine a discontinuity atT̃c for infinite M . For the TI
model we also defined a ‘‘ferromagnetic’’ correlation leng
by computing

j f5S lnUt1

t f
U D ~21!

, ~14!

wheret f is the second maximumpositiveeigenvalue. At low
temperaturesj f does not coincide with the realj because
there is usually a negative eigenvalue that is larger in mo
lus thant f .

It can be seen thatj f[j only in those samples@that occur
with frequencyO(1/M )] in which the ground states happen
to be on the diagonal of the matrixE(s,t). The second
eigenvalue for most of the samples is negative becaus
detects an antiferromagnetic ordering. The reason of th
that Ẽ05E(k0 ,k0) implies that two nearby sites tend to ha
the same configuration of spins in the lowest-energy st
u-

it
is

e.

The opposite happens in the antiferromagnetic case. A
can be seen from Fig. 4, the ferromagnetic correlation len
does not diverge at zero temperature but shows a p
whose height grows withM , in correspondence with the

transition temperatureT̃c . In Fig. 5 we plot the correlation
length of the nontranslationally invariant model. Consisten
with our mean field predictions, the peak, which shows
crossover with the mean field~MF! behavior, seems to pre

dict the MF critical temperatureTc and notT̃c . So this one-
dimensional REM can give us a slight idea about what h
pens when the models that in the MF present a discontinu
1RSB transition are generalized to finite dimension.

The speculation that one could make from the results
tained in this work is the following: if the model is provide
with an underlying crystalline ground state, the transition
finite dimension becomes a real first-order transition with
finite latent heat; if there is no underlying crystalline sta
the transition does not seem to show any discontinuity on
first derivative of the free energy as a second-order transi
-
FIG. 5. Correlation length, in units of the lat
tice spacing, of the NTId51 REM vs tempera-
ture for M54,5,6,7.
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~for the possibility of the arousal of divergent correlatio
see@11–13#!.

The numerical exact solution in dimensiond51 repre-
sents a complementary approach to what was done in@11#,
et

ri
where one started from the MF solution. There is still mu
work that has to be done on the subject.
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