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Crossover behavior of a one-dimensional random energy model
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In this paper we formulate a finite-dimensional generalization of the random energy (Rédé) where we
introduce a geometry and spatial correlations between energies. We study the model in dimension one by
transfer matrix techniques and we look at the crossover from one-dimensional to mean-field behavior. In a first
version of the model the mean field limit reproduces the behavior of the original REM, while a second version
of the model exhibits a first-order phase transition with a finite latent [84063-651X98)00211-6

PACS numbd(s): 64.60.Cn

The random energy modéREM) [1,2] is a very simple  considers a system of'2levels with energies that are ran-
mean field spin glass model that can be exactly solved. Thdom independent variables extracted from a Gaussian distri-
model, in spite of its extreme simplicity, captures many fea-bution
tures of other, more complicated, spin glass models. The
REM belongs to the class of spin glasses that present a phase _
transition basically due to an entropy collapse phenomenon. P(E)~exp(—E“/NJ). @

In other words, at low enough temperature, the system finds

no states with energies below a given value and remainsrom now on we shall sel=1. The energy levels of the
stuck in the lowest state. Below a critical value of the tem-system can be thought as corresponding to the configurations
perature the model therefore freezes in a state of minimabdf N Ising spins.

energy and zero entropy. This transition is rather peculiar: Note that we have not specified any microscopic variable
Even though it involves no latent heat, it does not show anyor this model. This is the natural consequence of the hypoth-
precursor effectno divergent susceptibilijy sharing there- esis that in this model the energies are totally uncorrelated
fore some features typical of first-order transitions and otherfrom the microscopical configurations, which are now only
typical of second-order ones. This behavior is qualitativelylabels of the energy level and are here indicated by the
common to a whole class of mean field models of spinindexi.

glassege.q., thep>2 spin mode(3,4] and the Potts modgl Usually the limitN—c< is considered, where the system
[5,6] that show a discontinuous one-step replica symmetryreezes into a state of zero entropy. This is easily seen by the
breaking(1RSB) transition[7]. An interesting observation is following argument. The average number of configurations
that models of this class seem to be a good paradigm twith total energy betweek andE+ 6E is

describe structural glasses where no disorder is explicitly

present in the Hamiltonian but there is an effective, self- _

induced, randomne$8—10]. The aim of this work is to pro- n(E)=2Ne E/N, 2

vide some insight into what happens to these models when

considered in finite dimension. Some work on this line Ofwhere the overbar indicates the average dR€E). In the

research has been contemporarily done on a short raunged|ar eN limit. for |IEI>E.=N+in2. the entropv of the svs-
spin glass model above the lower critical dimendibh—13. rg is mit [E[>Eo ' Py 4

In this paper we shall introduce a finite-dimensional gener-
alization of the REM that includes a spatial dependence of
the variables. We will study in detail the properties of the wﬁ]_
model in one dimension where no phase transition occurs.
Nevertheless, the model is defined in such a way that, in the _
limit of a parameteM to infinity, the mean field solution is 0" €nergies such th|>E, the exponent becomes nega-

recovered. So we will observe the crossover towards meafl’® and for_IargeN thgre aré no energy Ievgls. In this case
field behavior asVl is increased. the system is frozen into its ground state with zero entropy.

The model will be formulated in two versions, which have Introducing the temperature by
interestingly different behavior. In the standard REM one

T ( aS(E)) -1
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1 1 very similar to the short-rangp spin model introduced in
- N( TIn2+ T forT>T,=—— [11-13 in the largep limit, where the energies are uncorre-
= 2yIn2  (3)  Jated. The only difference, which should not be very impor-
~N+In2 for T<T,. tant, is that this model does not account for the interactions

between spins that are on the same site. A second possible

At the critical temperature the saddle point solution change¥ersion is a translationally invariaitl) model, in which the

discontinuously and one would say that the transition is firs€orrespondence between the spin configurations and the pos-

order. Furthermore, there are no physical quantities that diible energy levels is space independend1 the model

verge afT.. Nevertheless, the free energy is differentiable atvould have to be also rotationally invariant for our following

the critical temperature and no latent heat is involved in theonsideration to be true. By Tl we will therefore mean also

transition. rotational invariant ifd>1. This means that for each sample
In the following we shall try to learn if the features of this One assigns a lawo(, 7)—E(o, 7) extracting the values of

peculiar transition are a property of the adimensional caséhe energy from Eq(4).

and how this transition appears when the model is general- Both versions of the model can be formulated in a sym-

ized to finite dimension. The REM can be generalized bymetric and nonsymmetric way, i.e., one can impose or not

introducing a geometry and a spatial correlation between thénpose the following symmetry condition, which reduces by

energy levels. The dimensional random energy modehalf the number of independent energy levels:

(DREM) can be formulated in general dimension and the

mean field solution can be found using analytical arguments. Eiivp(o,7)=Ei i p(7,0). (6)

For finiteM we analyze the model id= 1 by transfer matrix

techniq'ues and st'udy the crossover from one dimensional tQ, the following we will study in detail the NTI model and

mean field bEhaV.'OL . _ . the symmetric translationally invaria§TIl) model. While
The DREM will be formulated in two versions, which he first model is rather natural in a spin glass context, the

have quite different mean field limits. An interesting ques-qonq is more attractive in connection to the modeling of

tion is whether or not a growing correlation length developsgy cyyral glasses. In the latter model, in fact, if the lattice is
for increasingM.

. : . . chessboard decomposable, the system has a crystalline
The first version of the model shows, in the lafdeimit, 40 nq state. Nevertheless, frustration due to the presence of
a transition with no latent heat similar to the case of they o disorder makes the minimization of tfeee) energy a
REM. The second version of the model exhibits a first-ordef, 54 task and the system may eventually fall into a glassy
phase transition into a crystalline state with a discontinuity ingiate.

the specific heat. _ , Both versions of the model can be easily solved in the
The model is defined in the following way: We consider a|5qem limit. This is quite trivial in the case of the NTI

d-dimensional square lattice of ije_wnh M spins on each  pREM since one basically recovers the REM. This is clear

site, in the limit ofL —c. SoV=L"is the number of siteS pacayse for largél one can consider the energies of the

andMYV is the total number of spins of the model. links essentially as uncorrelated so the average number of
Let us consider the link—i+u between sitei and a  configurations with total energy betwe&wandE+ 5E is

nearest-neighbor siier , wherez is a positive unit lattice

vector. With each of the 2" possible configurations of the ﬁ=2’\"ve* E2/MV. @)

spins at the edges of the link-i +,& we associate a random

energy extracted from the probability distribution Applying Derrida’s standard microcanonical argument on

the total energy of the system, one obtains a critical tempera-

1 —E%(o,7) ture of T,=1/(2yIn2) and a ground state total energy
P(E(0,7))= \/Wex M 4 —_MV,In2. This is evidently the mean field solution of

the model since, for largk!, each spin interacts with a large
number of nearest neighbors. The high-temperature free-
The possible energy levels of a link are therefor® 2  energy density of the model is therefore the same as that of

independent numbers extracted from a Gaussian distributiohe REM and af . the model freezes in its ground state. The
The partition function of the model is translational invariant model behaves quite differently even

at the mean field level if formulated with the further condi-

v tion of symmetry(6).

z=>, exp( -8 D E (S, ,Si+,1)), (5) The STI DREM has in fact a state of lower energy than
(s} T —ML/In2. This can be understood by considering the pos-
sible energy levels of one single link. The set of energies of

each single link is a REM with?' energy levels and there-

Ei,i+n(Si,Si+,) being the energy of link—i+ w. Note that, fore has a ground state enefg}Ei,H,}(fT?,T?ﬂ;)

to avoid double counting, for each siteve consider only the .
d nearest neighbors taken along the positive direction. A pos- My2In2. This is true also for the NTI model or for the

sible version of the model consists in taking the energies of | Model without 'ghe symmetry condition, but the choice of

different links as independent variables, in which case wdhe configurationr”, - on sitei +u to minimizeE; ., in
have a nontranslationally invariatTl) spin glass. This is general, does not allow; , ;, ;. ,; to be minimized. Here
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FIG. 1. Free energy, in units of J, of the Tl
d=1 REM vs temperature foM=4,5,6,7. The
horizontal lines are the ground state energies.
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i +,&+; is a general nearest neighbor sitei @f/;_ The rea- anditis easy to show, by standard transfer matrix arguments,
son for this is that the disorder is different from link to link that, in the limit of an infinite chainl(—<°), one can calcu-
and there is no condition ensuring that the ground state dfte the free-energy density and the correlation length by the
Eis,.i+; will correspond to the configuratiomioﬁt on site  identities
i+ 4. In fact, the TI model without the symmetry condition
can crystallize on a periodic state only in those samples hav- o1 _
S 0 0 ) ) —BF=lim=In(t) =N\,
ing Eqo=E(o; ,aiﬂ;) so the energy of each link may again Lol
be in the ground state. For the STI DREM the picture is quite
different: If the lattice is chessboard decomposable, the spins
can always arrange themselves in a structure that alternates i= ( In
in space the minimizing configuratiorts?,T?Jr;L. In this
way, contrarily to the NTI model, every link is in its true
ground state. This yields a total energy=—MV\2In2  wheret; andt, are, respectively, the first and second largest
that is lower tharE,. The freezing in this true ground state (in modulug eigenvalues of and\ ; is called themaximum
will happen at a temperaturd, at which the high- Lyapunov exponent _
temperature free energy reaches the vlye One has In the case of the NTI model one has to conS|dEar the
product of the sequence &f transfer matrice® =11, T,
and define the corresponding hermitian matrix

ty

(=1)
ts ) ' (19

1++2
2 8

Te= :
" 2yin2 V=[P P.].

This transition is first order and the latent heat is For L— the free-energy density of the model can be cal-

culated by making use of some central limit theorems for
Ciar=1In2. (99  products of random matrices. More precisely, one can say
(Fustemberg theorenthat the limit

Below the lower critical dimension the phase transition dis-

appears whe is finite. We do not know at present what ~ 1

the critical dimension is, but we know that it has to be larger —BF=N1=lim Hn[[P| (11)
than one. However, even in dimension one, it is interesting to Lo

study the crossover from smooth to sharp behavior wien

is increased. exists with probability one.

For finite values oM we analyzed the model in one di- X, is called themaximum Lyapunov characteristic expo-
mension by the transfer matrix method. For each liokthe  nent and is a positive nonrandom quantitg4]. One can
model we have a'$x2M transfer matrix'i’i. For the trans- define a whole set of characteristic Lyapunov exponents
lationally invariant model one has

1 .
A lim =—In(t;), (12
T=T L2l
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FIG. 2. Free energy, in units of J, of the NTI
e 7 d=1 REM vs temperature foM =4,5,6,7. The
horizontal lines are the ground state energies.
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where thet; are the eigenvalues of, . Similarly to the TI ~ €rage in virtue of the Fustemberg theorem. In Fig. 1 the
case, a correlation length can then be defined errors are of the same order of magnitude as the point size. In

Fig. 2 there is a small numerical imprecision that we reckon
is responsible for the slight wiggling of all the curves for the
NTI case.

We computed the first and second Lyapunov characteristic We note that the nontranslationally invariant models as
exponents by means of the method developed by Benettiy€!l as the nonsymmetric translationally invariant models
et al.[14]. follow quite well the mean field theoretical prediction al-
The results obtained by the transfer matrix method foready for quite smalM. In Figs. 1 and 2 we also plotted the
finite M are summarized in Figs. 1-5. The values of the fredowest-energy state for different valuesidf. The TI model
energy per linkF(T) are slightly different from theM — succeeds in freezing right in the lowest-energy by arranging
|nf|n|ty values above, but one can Verify that they are Conjtself on the Conﬁguration of periOd 2. The NTI model does
sistent with them. For finitéM a given sample of the TI not reach its lowest energy state and freezes only at lower
model is more likely to freeze at higher temperature than théémperatures with a higher value of the energy.
mean field value and the free energy is always well above the In Figs. 3 and 5 we plot the correlation lengths of the
mean field curve. models. For the TI model we averaged the logarithm of the
In Figs. 1 and 2 we plot the free-energy density per link ofcorrelation length for different samples. One notices that at
the STI DREM and the NTI DREM as a function of the T, the curves for various values & separate consistently
temperatures and for different valuesMf In Fig. 1 we plot and are steeper and steeper the lakgés. Here one sees the
the sample-averaged free energy, while Fig. 2 needs no aeffect of the crossover with the mean field limit since one

E=(X—Xp Y. (13
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FIG. 4. Ferromagnetic correlation length, in
units of the lattice spacing, of the B=1 REM

sl vs temperature foM =4,5,6,7.
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could imagine a discontinuity &, for infinite M. For the TI ~ The opposite happens in the antiferromagnetic case. As it
model we also defined a “ferromagnetic” correlation length can be seen from Fig. 4, the ferromagnetic correlation length
by computing does not diverge at zero temperature but shows a peak,

whose height grows witiM, in correspondence with the

(—1) transition temperatur@,. In Fig. 5 we plot the correlation
) ) (14) length of the nontranslationally invariant model. Consistently
with our mean field predictions, the peak, which shows the

crossover with the mean fieldF) behavior, seems to pre-

wheret; is the second maximumositiveeigenvalue. At low  dict the MF critical temperatur&, and notT.. So this one-
temperatures; does not coincide with the red because dimensional REM can give us a slight idea about what hap-
there is usually a negative eigenvalue that is larger in modupens when the models that in the MF present a discontinuous
lus thant; . 1RSB transition are generalized to finite dimension.

It can be seen that=¢ only in those sampldghat occur The speculation that one could make from the results ob-
with frequencyO(1/M)] in which the ground states happens tained in this work is the following: if the model is provided
to be on the diagonal of the matri&(o,7). The second with an underlying crystalline ground state, the transition in
eigenvalue for most of the samples is negative because ffite dimension becomes a real first-order transition with a
detects an antiferromagnetic ordering. The reason of this ifnjte latent heat; if there is no underlying crystalline state,
thatEy=E(kq,ko) implies that two nearby sites tend to have the transition does not seem to show any discontinuity on the
the same configuration of spins in the lowest-energy statdirst derivative of the free energy as a second-order transition

FIG. 5. Correlation length, in units of the lat-
tice spacing, of the NTH=1 REM vs tempera-
ture forM=4,5,6,7.
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(for the possibility of the arousal of divergent correlationswhere one started from the MF solution. There is still much
see[11-13). work that has to be done on the subject.

The numerical exact solution in dimensiai=1 repre- We wish to acknowledge useful conversations with A.
sents a complementary approach to what was dori@i)y  Crisanti and A. Vulpiani.
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